
Pergamon 
Journal of Structural Geology, Vo|. 16, No. 7, pp. 1033 to 1037, 1994 

Copyright © 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0191-8141/94 $07.00+0.00 

0191-8141(94)E0020-Y 

M o d e l i n g  d i s p l a c e m e n t  and  d e f o r m a t i o n  in a s ingle  m a t r i x  opera t ion  

DECLAN G .  DE PAOR 

Geology Department, Bell Hall, George Washington University, 2029 G Street NW, Washington, DC 20052, 
U.S.A. 

(Received 27 September 1993; accepted in revised form 15 January 1994) 

Abstract-----Computer models are increasingly employed in the effort to understand geological structures. Such 
models must frequently accommodate simultaneous discrete displacement and distributed deformation, as in 
the case of a fault-bend fold structure, for example. Traditionally, vectors are used for the specification of 
displacements and rank-2 tensors for deformations. In this paper, an alternative method is described. 
Displacement and deformation in two dimensions are modelled using a single 3 x 3 matrix and a three- 
dimensional model is created with a 4 x 4 matrix. This works because of the correspondence between 
displacement in n dimensions and simple shear in n + 1 dimensions. The method is a special case of one 
commonly used for perspective rendering in computer graphics applications but is apparently unfamiliar to 
structural geologists. 

INTRODUCTION 

DURING tectonism rocks may be displaced along discrete 
faults in response to an applied force or penetratively 
deformed throughout a shear zone in response to an 
imposed stress. Traditionally, these different rock re- 
sponses were studied independently; textbooks gener- 
ally contained separate chapters on brittle and plastic 
deformation with little overlap. Recently, however, 
structural geologists have become increasing aware of 
the interaction of discrete and penetrative structures; for 
example, brittle and plastic deformation mechanisms 
are now known to interact in deforming rocks and many 
fold types are known to be intimately related to fault 
displacement both in time and space. 

The standard approach to the mathematical modeling 
of structures is to use vectors to describe displacements 
and rank-2 tensors to describe deformations. Thus, in 
three dimensions, a point in a rock mass might under go 
a displacement u, 

[Ul] 
u =  u2 (1) 

U3 

and a deformation D, 

[ D l l  D12 D 1 3 ]  

D =  / D 2 1  0 2 2  D23 (2)  

LO31 D32 D33 

(Means 1976). It seems that this separate treatment of 
displacement and deformation is necessary because a 
series of displacements labelled a,b,c accumulate addi- 
tively, 

Utota I ~- U c q- U b "k- U a (3) 

whereas the cumulative effect of deformation is multi- 

16..7-i 1033 

plicative (by convention, tensor products are written 
sequentially from right to left), 

Dtota I -- D c D b D  a. (4) 

However, it is possible to write the effect of a vector and 
rank-2 tensor in a single matrix operator and thus 
improve the efficiency and presentation of mathematical 
models involving both discrete displacement and distribu- 
ted deformation. This paper describes the basic theory of 
the combined transformation and includes a number of 
practical applications. 

Two-dimensional  case 

In order to describe a two-dimensional combined 
displacement and deformation we must start by con- 
sidering a three-dimensional deformation. Consider a 
card deck in the shape of a unit cube with cards oriented 
parallel to the xl and x2 co-ordinate axes as in Fig. l(a). 
The deck is free to undergo homogeneous simple shear 
deformation 7 in any direction perpendicular to x3, and 
so the deformed state may:have components of shear 
parallel to the xl and x2 axes, which we label 71 and Y2, 

D = 1 . (5) 
0 

Consider the front card, the one that cuts the x3 
co-ordinate axis at {0, 0, 1}. Any pointp = {Xl, x2, 1} on 
this card is transformed to p '  = {x~, x~, 1} given by the 
standard deformation tensor equation, 

o r  

p'  = D * p (6) 

1 
(7) 
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Fig. l. (a) Card deck oriented parallel to the Xl-X 2 co-ordinate plane. 
p is an arbitrary point on the front card, which cuts the x 3 reference axis 
at {0, 0, 1}. (b) Simple shear y indicated by bold arrow, p'  is the 
deformed equivalent of p in (a). Dashed square indicates the initial 
position of the front card. (c) Deformation of the plane of the front 
card transforms p'  to p". Bold arrows indicate the displacement 
gradients. D l and D 2 are the column vectors of the deformation tensor 

D. u is a displacement equal to y in (b). 

(Fig. lb). If we apply two sequential phases of simple 
shear, denoted by subscripts a and b, the total defor- 
mation, subscripted c, is given by pre-multiplication as 
in equation (4). However, in this case 

D c = DbD a (8) 

1 0 ybXl[1 0 ~ a l ]  

= 0 1 Yb2110 1 Ya2 
0 0 IJLo 0 1 

(9) 

1 0 Ybl + Yal] 
= 0 1 Yb2 + Ya2 

0 0 1 
(10) 

[i °  bx] [ 1° a1 ] = 1 Yb2 + 0 1 Ya2 
0 1 0 0 1 

= D b + D a. 

Thus the cumulative deformation, equation (10), is 
given both by tensor multiplication, equations (8) and 
(9), and tensor addition, equations (11) and (12). 

Now imagine that deformation is possible within the 
plane of the front card so that a unit square is deformed 
into a parallelogram by 

[ O  [Dl l  D12 0 ] 
D = /D21 D22 0 (13) 

0 1 

prior to shearing. Combining equations (5) and (13) 
gives a general deformation 

['Dllo D12 Y~] 
D =  LD21 DeZo (14) 

comprising a two-dimensional deformation of the plane 
of the card indicated by elements Dij [i, j = 1, 2], com- 
bined with a simple shear which displaces but does not 
distort the card plane (Fig. lc). Remembering that shear 
strain (y) is defined as the displacement (u) divided by 
the orthogonal distance from the reference frame, which 
is unity for the front card, equation (14) may be rewrit- 
ten 

F Dl l  D12 Ul ] 

D = [ D 2 1  D22 u 2 • (15) 
ko 0 1 

From equation (6), the point p = {Xl, x2, 1} is trans- 
formed top '  = {x], x~, 1} by 

[i] o,2 .Irx, l 
= IO21 022 ~=/1~ / •  (16) 

L 0  0 1 J k l . t  

The bottom row of this equation expresses the fact that 
there is no change in the x3 dimension and thus may be 
treated as a dummy dimension. The top two rows give 
the combined effect of a two-dimensional displacement 
u and a two-dimensional deformation D upon points in 
the {001} plane. Normally, we assume x3 = 0 for any 
two-dimensional analysis, but x3 -- i is more convenient 
in this case. 

Three-dimensional case 

A 
and deformation requires a 4 x 4 matrix, 

three-dimensional combination of displacement 

xq= io2, o2= 0=3 u2//xq, 
X~J LD~I O320 O330 /A3 / I X 3 1 1  ,.11_1 .] 

(17) 

where the bottom row is again a dummy dimension, 
(11) x4 = 1. The underlying principle is the correspondence 

between displacement u in n dimensions and simple 
shear ), in n + 1 dimensions. The matrix incorporating 

(12) the extra dimension represents a homogeneous defor- 
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mation and satisfies the tensor transformation rule for 
rank-2 tensors. Of course, in four dimensions, the defor- 
mation tensor is a mathematical concept only, since it is 
impossible to visualize simple shear of a hypercube 
leaving one of its 'sectional' cubes undeformed! 

Although derived independently here using concepts 
of shear and stretch familiar to geologists, equation (16) 
is but a special case of a general homogeneous co- 
ordinate transformation commonly used in computer 
graphics applications (e.g. Foley et al. 1990), especially 
for the display of perspective views (in which case, 
variables may appear in the bottom row). However, the 
approach is unfamiliar to structural geologists in gen- 
eral. 

Displacement and displacement gradients 

The displacement gradients tensor u is simply related 
to the deformation (alias position gradients) tensor D 
(Ramsay & Huber 1983) so we may write an equation 
that combines the effects of rigid displacements and 
displacement gradients, 

1 [0~ 1 ~x2 2 0 

[-100]h ] 
- o  1 0//x  

. o  o 1JL1 
(18) 

Oxl Ox2 ul x] 

OU 2 OU 2 

aXl aX E 

0 0 

(19) 

If the net displacements of a set of marker points are 
known, then the displacement field may be factored into 
a common, discrete displacement and a residual dis- 
placement gradient, from which the deformation state 
follows. 

PRACTICAL EXAMPLES 

(1) Rigid rotation about a point other than the origin 

It is well known that a rotation through an angle 0 
about the origin is given by 

[cos 0 - sin 0] (20) 
R = Lsin 0 cos 0 J" 

However, if the center of rotation is at C = {C 1, Cz}, 
then the final position p'  = {x'~,x~} of a point initially atp 

= {X1,X2} is given by translating C to the origin, applying 
the rotation R, and then restoring the center C (Fig. 2). 
In the matrix notation outlined here these operations 
are, ix ] [10 sin0] 

1~ = 0 1 C 2 | | s i n O  cosO 
0 0 1..lk o o 

or  

cos 0 

si 0 0 

[il0 clrxl] 
x 0 1 -cfl/x  

o o 1 J L 1  
(21) 

- sin 0 
cos 0 

0 

q(1-cosO)+C2sinOqrxl ] 
c2(1 cosO)+ClsinOJL]2J.(22)1 

Equation (22) may be written in alternative form, using 
0 as the independent variable, 

• ~ = x~ q Cl - x~ q | | s i n  (23) 
1 o o a j k  1 

which is convenient when modeling the effects of various 
rotations on a given initial point. 

(2) Fault-related flexure 

Consider a rock mass undergoing simple shear defor- 
mation during displacement over a fault bend (Fig. 3a). 
Let u 1 be an increment of the fault displacement along 
the lower flat and let the dip of the ramp be 2% The 
deformation associated with the ramp may be viewed as 
a dextral simple shear 

27 = 2 tan V/ (24) 

combined with a counterclockwise rotation 

0 = - 2~p (25) 

about a center of rotation C = {C1,C2} located at the 
foot of the ramp. The displacement of a point p to p'  
along the lower flat is simply given by 

P' = P + u l .  (26) 

If p '  now lies within the kinked domain, then a defor- 
mation must be applied bring it to p" (Fig. 3b) and then 
p" (Fig. 3c) using the tensor product 

~" = 1 sin 0 cos 0 0 
[ 1  0 0 0 1 

[i 0 CllrX ] 
× 1 0 1 - q / l + +  (27) 

0 1 0 1JL1 
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Fig. 2. Rotation of an elemental cube about a centre C. (a) Initial position. (b) Translation through - C .  (c) Rotation about 
the co-ordinate origin. (d) Translation by +C. 

o r  

r, 'l [i o   ][coi o  ,cosO-sinO o] 
x"  = 1 C2 si 0 2 ~ s i n O + c o s O  0 

L ; J  : o 1 0 1 

i 0 - C0Fx~ 1 
× 1 - Cq/x~/ (28) 

0 1 j L 1 j  

which represents a translation of the center of rotation C 
to the origin, application of shear strain parallel to the xl 
axis, rotation through the ramp angle and restoration of 
the center of rotation. For computational efficiency, this 
product  may be reduced to a single 3 x 3 matrix prior to 
transformation of a large set of points, 

[ xq 
fl-- 

cos 0 cos 0 - sin 0 7 
sin 0 y sin 0 + cos 0 

0 0 

rx l 
x / x ~ / •  

i. 1 ..! 

C1 + C2 sin 0 - (C1 + yC2) cos 0 q 

l C2 - C2 cos 0 - (Ct + yCz) sin 0 

1 

(29) 

Alternatively, the transformation may be viewed as a 
sinistral simple shear - 2 y  oriented parallel to the kink 
plane, bringing point p' to p'" (Fig. 3d), 

[x'~'q [i 0 c, qrcosv, -sinW !] 
x" = 1 C 2 / / s i n  V' cos W 

L':J 0 I J L O  0 

X [i °°][7 sin, 01 - ~ 1 0 s V 2 cos~0 0 

0 1 0 1 

i o -c11Fi1 
x 1 - q / I x q .  (30) 

o 1 JLIJ 
The net effect is the same because the distortion pro- 
duced by any 'real'  dextral simple shear parallel to one 
circular section of the strain ellipsoid (the fault fiat) is 

equivalent to a 'virtual' sinistral simple shear parallel to 
the second circular section (the kink plane). 

(3) Faulted folds 

The final example demonstrates the application of the 
method to a heterogeneously strained domain as rep- 
resented by the faulted folds in Fig. 4. A set of faults 

I C 

(a) 

,~/ (b) 

c ~ 
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C 
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Fig. 3. Displacement and deformation associated with a fault bend 
fold. (a) Init ial point p would be displaced by u I t op '  in the absence of 
the fault. Since p' lies in the kink zone, a correction is necessary. (b) 
Dextral simple shear 2y parallel to the fault flat. ~p is the angular shear 
for half the total deformation. Dashed lines are circular sections of the 
strain ellipsoid. Light arrow shows the rotation of the inclined circular 
section. Point p '  in (a) is displaced to p" (bolt arrow). (c) Counter- 
clockwise rotation (light arrow) through 2~0 about the center of 
rotation C located at the base of the fault ramp. Point p" in (b) is 
rotated to the final position p". (d) Alternative to steps (b) and (c). 
Sinstral simple shear (bold half arrows) of - 2 y  oriented parallel to the 
kink fold axes. Point p '  in (a) is displaced directly (bold arrow) to p". 
The ramp angle is 2~ (light arrow) and the flat and ramp mark the 
initial and final orientations of one circular section of the strain 
ellipsoid (the second circular section is fixed parallel to the kink axes). 
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Fig. 4. Non-rigid displacement of previously deformed rocks along a 
curved fault. Arrows indicate fault displacement. Thick black line is a 
deflected dike. Ellipses represent stretch at previously juxtaposed 

locations Pa and Pb. u is the net displacement, Pb-Pa" 

have been mapped through a sequence of folded rocks 
containing strain markers such as deformed pebbles or 
oolites. Two localities specified by position vectors Pa 

and Pb were originally juxtaposed but are now separated 
by a net fault displacement u 

U = Pa -- Pb' (31)  

Strain measurements in a common {xl,x2} reference 
frame yield two stretch (irrotational deformation) ten- 
sors, Sa and Sb. In this case we may write 

SUm1 Sb,  l 
~012 Sb22 Pb2 = IS12  S22 u2 

0 1 L 0  0 1 

equation of this type cannot be solved for all unknown 
components,  there are realistic situations in which a 
combination of strain markers, displaced veins or dikes 
(thick line in Fig. 4), and fault strike data, may yield at 
least a partial picture of the displacement and defor- 
mation fields surrounding the fault. Conversely, when S 
is independently known or inferred from a fault mechan- 
ism model,  or where rigid displacement, i.e. S = 1, on a 
straight fault is assumed, the amount of displacement u 
may be obtained by determining the strain compatibility 
of formerly juxtaposed domains. Values of displacement 
components {Ul, u 2} may be iteratively incremented and 
associated stretch measurements,  Sa, Sb tested for com- 
patibility across the interface. 

CONCLUSION 
Equations (27)-(32) illustrate the power of the 

method. A complex transformation may be built up 
from simple, understandable, steps whilst the final 
matrix reduces to the minimum number of computa- 
tional s teps--an important consideration when model- 
ing the displacement and deformation of large sets of 
points. 
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× 
I Sall Sa12 P a l l  

5012 Sa220 Pa2J,  (32) 

where S is the stretch of sidewall b relative to sidewall a 
resulting from non-rigid faulting. Whilst a single 
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